导数sin2xcos3x的原函数
1个回答
展开全部
I=∫sin2xcos3xdx
=(1/3)∫sin2xdsin3x
=(1/3)sin2xsin3x-(1/3)∫sin3xdsin2x
=(1/3)sin2xsin3x-(2/3)∫sin3x*cos2xdx
=(1/3)sin2xsin3x+(2/9)∫cos2xdcos3x
=(1/3)sin2xsin3x+(2/9)cos2xcos3x-(2/9)∫cos3xdcos2x
=(1/3)sin2xsin3x+(2/9)cos2xcos3x+(4/9)∫cos3xsin2xdx
=(1/3)sin2xsin3x+(2/9)cos2xcos3x+(4/9)I
所以:
I-(4/9)I=(1/3)sin2xsin3x+(2/9)cos2xcos3x
I=(3/5)[sin2xsin3x+(2/3)cos2xcos3x].
=(1/3)∫sin2xdsin3x
=(1/3)sin2xsin3x-(1/3)∫sin3xdsin2x
=(1/3)sin2xsin3x-(2/3)∫sin3x*cos2xdx
=(1/3)sin2xsin3x+(2/9)∫cos2xdcos3x
=(1/3)sin2xsin3x+(2/9)cos2xcos3x-(2/9)∫cos3xdcos2x
=(1/3)sin2xsin3x+(2/9)cos2xcos3x+(4/9)∫cos3xsin2xdx
=(1/3)sin2xsin3x+(2/9)cos2xcos3x+(4/9)I
所以:
I-(4/9)I=(1/3)sin2xsin3x+(2/9)cos2xcos3x
I=(3/5)[sin2xsin3x+(2/3)cos2xcos3x].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询