辅助线构造三角形方法
扩展资料
辅助线构造三角形的方法
1、连接两点。
辅助线构造三角形最简便的方法,就是当存在两条边时,可以连接两个端点,形成第三条边,从而构建三角形。例如在特殊四边形(如梯形、矩形等)中可以连接对角线,利用对角线的相关性质进行解题。
2、截长补短法。
截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。这个方法常用于解决线段的和差问题。
辅助线构造全等三角形
除了构造普通三角形,利用三角形的相关性质,在涉及线段长度的计算和证明题中,我们还可以通过构造全等三角形,形成新的边长关系。
3、角平分线。
角平分线有三种添辅助线的方法:可以自角平分线上的.某一点向角的两边作垂线,根据角平分线到两边距离相等的性质,可以得到两个全等的直角三角形;可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形;可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4、倍长中线法。
通过延长线段至于某段线段相等,或取线段的中点来构造全等的三角形,揭示图形中隐含性质,聚拢集中已知条件。
2023-06-12 广告