∫1/(1+ x^2) dx=(1/2) ln(1/2)
展开全部
令 x=tant (-π/2<t<π/2),则
∫(1+x^2)dx=∫sectdtant
=sect*tant-∫tantdsect
=sect*tant-∫tant(sect*tant)dt
=sect*tant-∫[(sect)^2-1]sectdt
=sect*tant-∫(sect)^3dt+∫sectdt
=sect*tant-∫(sect)^3dt+ln(sect+tant)+C1
注意到∫sectdtant=∫(sect)^3dt
故原积分=(1/2)sect*tant+(1/2)ln(sect+tant)+C
最后再作变量还原即得结果:(1/2)x*[√(1+x^2)]+(1/2)ln(x+√(1+x^2))+C
∫(1+x^2)dx=∫sectdtant
=sect*tant-∫tantdsect
=sect*tant-∫tant(sect*tant)dt
=sect*tant-∫[(sect)^2-1]sectdt
=sect*tant-∫(sect)^3dt+∫sectdt
=sect*tant-∫(sect)^3dt+ln(sect+tant)+C1
注意到∫sectdtant=∫(sect)^3dt
故原积分=(1/2)sect*tant+(1/2)ln(sect+tant)+C
最后再作变量还原即得结果:(1/2)x*[√(1+x^2)]+(1/2)ln(x+√(1+x^2))+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询