如何证明是直角三角形 除勾股定理

 我来答
新科技17
2022-07-31 · TA获得超过5894个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.4万
展开全部
可以利用三角形的余弦定理 (高中数学)
设三边分别为a,b,c夹角为A,B,C 可得(b^2+c^2-a^2)/(2bc)=cosA
若 cosA 为0 则∠A为直角 同理可证∠B ∠C
若在平面直角坐标系中证明 可以使用向量(高中数学)
设三定点分别为向量A,向量B,向量C 可得 (AB*BC)/(|AB|*|BC|)=cos∠B
若 cos∠B为0 则∠B为直角 同理可证∠A ∠C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式