对于任意的x1,x2∈R.若函数f(x)=2^x,试比较[f(x1)+f(x2)]/2与f[(x1+x 2)/2]的大小
1个回答
展开全部
底数2>1,2^x恒>0
[f(x1)+f(x2)]/2/f[(x1+x2)/2]
=[(2^x1+2^x2)/2]/2^[(x1+x2)/2]
=[2^(x1-1)+2^(x2-1)]/2^[(x1+x2)/2]
=2^[x1-1 -(x1+x2)/2] +2^[x2-1-(x1+x2)/2]
=2^[(x1-x2)/2 -1]+2^[(x2-x1)/2 -1]
=(1/2)[2^[(x1-x2)/2] +1/2^[(x1-x2)]/2]
由均值不等式得2^[(x1-x2)/2]+1/2^[(x1-x2)/2]≥2,当且仅当x1=x2时取等号.
(1/2)[2^[(x1-x2)/2] +1/2^[(x1-x2)]/2]≥1
[f(x1)+f(x2)]/2≥f[(x1+x2)/2],当且仅当x1=x2时取等号
[f(x1)+f(x2)]/2/f[(x1+x2)/2]
=[(2^x1+2^x2)/2]/2^[(x1+x2)/2]
=[2^(x1-1)+2^(x2-1)]/2^[(x1+x2)/2]
=2^[x1-1 -(x1+x2)/2] +2^[x2-1-(x1+x2)/2]
=2^[(x1-x2)/2 -1]+2^[(x2-x1)/2 -1]
=(1/2)[2^[(x1-x2)/2] +1/2^[(x1-x2)]/2]
由均值不等式得2^[(x1-x2)/2]+1/2^[(x1-x2)/2]≥2,当且仅当x1=x2时取等号.
(1/2)[2^[(x1-x2)/2] +1/2^[(x1-x2)]/2]≥1
[f(x1)+f(x2)]/2≥f[(x1+x2)/2],当且仅当x1=x2时取等号
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询