数学建模的目的是什么?
数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
扩展资料:
从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
3. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
参考资料:百度百科——数学建模
2024-10-28 广告