已知圆O的方程为x2+y2=4.?
展开全部
解题思路:(1)设出过点P(1,2)的直线方程,利用直线与圆O相切的推出关系式,即可求出直线方程;
(2)通过直线m与x轴垂直,与不垂直,两种情况,利用圆心距半径半弦长关系,即可求直线m的方程;
(3)设Q点的坐标为(x,y),圆O上有一动点M(x 0,y 0),通过 ON =(2 x 0 , y 0 ) ,以及 OQ =2 OM + 1 2 ON ,得到Q,M点的关系,通过M在圆上,即可求动点Q的轨迹方程,然后说明此轨迹是椭圆.
解 (1)显然直线l的斜率存在,设切线方程为y-2=k(x-1),
则由
|2−k|
k2+1=2,得k1=0,k2=-[4/3],
从而所求的切线方程为y=2和4x+3y-10=0.
(2)当直线m垂直于x轴时,此时直线方程为x=1,m与圆的两个交点坐标为(1,
3)和
(1,-
3),这两点的距离为2
3,满足题意;当直线m不垂直于x轴时,设其方程为
y-2=k(x-1),即kx-y-k+2=0,设圆心到此直线的距离为d(d>0),
则2
3=2
4−d2,得d=1,从而1=
|−k+2|
k2+1,得k=[3/4],此时直线方程为3x-4y+5=0,综上所述,所求直线m的方程为3x-4y+5=0或x=1.
(3)设Q点的坐标为(x,y),M点坐标是(x0,y0
,8,已知圆O的方程为x 2+y 2=4.
(1)求过点P(1,2)且与圆O相切的直线l的方程;
(2)直线m过点P(1,2),且与圆O交于A、B两点,若|AB|=2 3 ,求直线m的方程;
(3)圆O上有一动点M(x 0,y 0), ON =(2 x 0 , y 0 ) ,若向量 OQ =2 OM + 1 2 ON ,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
(2)通过直线m与x轴垂直,与不垂直,两种情况,利用圆心距半径半弦长关系,即可求直线m的方程;
(3)设Q点的坐标为(x,y),圆O上有一动点M(x 0,y 0),通过 ON =(2 x 0 , y 0 ) ,以及 OQ =2 OM + 1 2 ON ,得到Q,M点的关系,通过M在圆上,即可求动点Q的轨迹方程,然后说明此轨迹是椭圆.
解 (1)显然直线l的斜率存在,设切线方程为y-2=k(x-1),
则由
|2−k|
k2+1=2,得k1=0,k2=-[4/3],
从而所求的切线方程为y=2和4x+3y-10=0.
(2)当直线m垂直于x轴时,此时直线方程为x=1,m与圆的两个交点坐标为(1,
3)和
(1,-
3),这两点的距离为2
3,满足题意;当直线m不垂直于x轴时,设其方程为
y-2=k(x-1),即kx-y-k+2=0,设圆心到此直线的距离为d(d>0),
则2
3=2
4−d2,得d=1,从而1=
|−k+2|
k2+1,得k=[3/4],此时直线方程为3x-4y+5=0,综上所述,所求直线m的方程为3x-4y+5=0或x=1.
(3)设Q点的坐标为(x,y),M点坐标是(x0,y0
,8,已知圆O的方程为x 2+y 2=4.
(1)求过点P(1,2)且与圆O相切的直线l的方程;
(2)直线m过点P(1,2),且与圆O交于A、B两点,若|AB|=2 3 ,求直线m的方程;
(3)圆O上有一动点M(x 0,y 0), ON =(2 x 0 , y 0 ) ,若向量 OQ =2 OM + 1 2 ON ,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询