已知:如图,在□ABCD中,对角线AC的垂直平分线分别与AD,AC,BC相交于点E,O,F.求证:

 我来答
风林网络手游平台
2022-12-21 · 百度认证:四川风林网络科技有限公司官方账号
风林网络手游平台
向TA提问
展开全部

根据平行四边的定理得:

∵四边形ABCD为平行四边形,

∴OA=OC,AD∥BC,

∴∠EAC=∠ECA,

在△AOE和△COF中

∠EAO=∠FCOOA=OC∠AOE=∠FOC    ,

∴△AOE≌△COF,

∴OE=OF,

∴四边形AFCE为平行四边形,

∵EF垂直平分AC,

∴EA=EC,

∴四边形AFCE是菱形.

扩展资料:

性质

(矩形、菱形、正方形都是特殊的平行四边形。)

(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等” )

(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”)

(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

(简述为“平行四边形的邻角互补”)

(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)

(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

(7)平行四边形的面积等于底和高的积。(可视为矩形。)

(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(9)平行四边形是中心对称图形,对称中心是两对角线的交点.

(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。

(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。

(13)平行四边形对角线把平行四边形面积分成四等份。

(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积

参考资料:百度百科——平行四边形

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式