幂级数展开中,为什么麦克劳林展式可以省略余项?

 我来答
闽恨甲瑾
2022-10-21 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:35%
帮助的人:698万
展开全部
1、麦克劳林展式是有限项,幂级数为无限项;
2、麦克劳林展式中最后有一项余项,幂级数没有。
其中,麦克劳林展式:sinx=x-x^3/6+o(x^3),幂级数:sinx=x-x^3/6+...
我们可以粗略地理解为,幂级数后面省略号部分用一个余项代替之后,就成了麦克劳林展式了;反过来,如果麦克劳林展式中保留的项很多,也就趋于幂级数了
说明:第一点中说到的幂级数为无限项,这是一个普遍的性质,假如某个幂级数只有有限项(例如2+x+4*x^2),应该看作无限项的特殊情况,即后面的系数全为零。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式