为什么用极坐标来计算?
展开全部
极坐标绕极轴旋转体积公式:用一般函数图形绕x轴旋转的旋转体体积公式,换元x=rcosθ,y=rsinθ即可得到此公式。
对极坐标表示的面积绕轴旋转的体积计算问题分别从积分元素法P.Guldin定理及球坐标下三重积分计算,给出三种计算方法。一般高等数学教材中均给出了由直角坐标表出面积的旋转体体积计算公式,即面积a≤x≤b, 0≤у≤y(x)。绕ox轴旋转所成旋转体的体积为如下图:
常见圆的极坐标方程:(1)、圆心在极点,半径为r的圆:p=r;(2)、圆心为M(a,0),半径为a的圆:p=2acosθ;(3)圆心为M(a,2/π),半径为a的圆:p=2asinθ.
极坐标,属于二维坐标系统,创始人是牛顿,主要应用于数学领域。极坐标是指在平面内取一个顶点O,叫极点,引一条射线Ox,叫作极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。
对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫作点M的极径,θ叫作点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫作极坐标系。
以上内容参考:百度百科—极坐标
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询