不定积分怎么计算?
1个回答
展开全部
计算过程如下:
原式=∫secxdtanx
=secx*tanx-∫(tanx)^2secxdx
=secx*tanx-∫[(secx)^2-1]*secxdx
=secx*tanx-∫(secx)^3dx+∫secxdx
2∫(secx)^3=secx*tanx+∫secxdx
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
不定积分的性质:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询