周期函数是怎么定义的?

 我来答
教育小百科达人
2023-01-21 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:471万
展开全部

对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)

2,再一次套用这个式子,得到f(y+2)=-f(y+4)

3,两个式子结合,得到f(y)=f(y+4),所以,周期是4

关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑

扩展资料:

1 .周期函数:对于函数f(x),如果存在非零常数T,使得当x取定义域D内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的 一个周期. 

2.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作函数f(x)的最小正周期. 

3.若函数f(x)具有周期性,且非零常数T是f(x)的一个周期, 则kT(其中k是不等于零的任意整数)也是f(x)的周期.

4.若数列{an}满足:对于任意的正整数n,都有

则称数列{an}是以K为周期的周期数列。

函数周期性的判定与应用

(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T。

(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ZESTRON
2024-09-04 广告
在Dr. O.K. Wack Chemie GmbH,我们高度重视ZESTRON的表界面分析技术。该技术通过深入研究材料表面与界面的性质,为提升产品质量与可靠性提供了有力支持。ZESTRON的表界面分析不仅涵盖了相变化、化学反应、吸附与解吸... 点击进入详情页
本回答由ZESTRON提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式