sin2x+ cos2x的最小正周期是多少?
1个回答
展开全部
sin2x+cos2x=√2sin(2x+π/4)。
sin2x+cos2x
=√2(√2/2*sin2x+√2/2cos2x)
=√2(sin2xcosπ/4+cos2xsinπ/4)
=√2sin(2x+π/4)
同角三角函数的基本关系式
倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的关系:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;
平方关系:sin²α+cos²α=1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询