求下列级数的敛散性

 我来答
crs0723
2023-07-16 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4515万
展开全部
其中(3)(4)(5)(7)(10)用达朗贝尔比值判别法,(6)(8)用级数收敛的必要条件,(9)用比较判别法
(3)lim(n->∞) [2^n/(n+1)!]*[n!/2^(n-1)]=lim(n->∞) 2/(n+1)=0<1,级数收敛
(4)lim(n->∞) [(n+1)!/(n+1)^(n+1)]*(n^n/n!)=lim(n->∞) [n/(n+1)]^(n+1)=lim(n->∞) [1-1/(n+1)]^(n+1)=1/e<1,级数收敛
(5)lim(n->∞) [(n+1)^2/3^(n+1)]*(3^n/n^2)=lim(n->∞) (1/3)*(1+1/n)^2=1/3<1,级数收敛
(6)lim(n->∞) [n/(n+1)]^n=lim(n->∞) [1-1/(n+1)]^n=1/e>0,级数发散
(7)lim(n->∞) {2^(n+1)*sin[1/3^(n+1)]}/[2^n*sin(1/3^n)]=lim(n->∞) 2*[1/3^(n+1)]/(1/3^n)=2/3<1,级数收敛
(8)lim(n->∞) 3^n/(1+e^n)=lim(n->∞) (3/e)^n/[(1/e)^n+1]=+∞,级数发散
(9)1/√[n(n^2+1)]<1/√(n^3),且∑1/√(n^3)收敛,所以原级数收敛
(10)lim(n->∞) [(2n+1)/2^(n+1)]*[2^n/(2n-1)]=lim(n->∞) (1/2)*(2n+1)/(2n-1)=1/2<1,级数收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式