正项级数∑(n=1→∞)是否收敛为什么

 我来答
YSa教育培训小助手
高能答主

2023-06-24 · 积极为大家在相关教育问题排忧解难
YSa教育培训小助手
采纳数:178 获赞数:12965

向TA提问 私信TA
展开全部

 √(n+1)-√n=1/[√(n+1)+√n]>1/[√(n+3n)+√n];

=(1/3)(1/√n);

>=(1/3)(1/n);

而∑(1/3)(1/n)=(1/3)∑(1/n) 发散 ;

所以 ∑ (n=1→∞)(根号n+1减根号n) 发散。


根值判别法,又称柯西判别法,是判断正项级数收敛性的一种重要方法。正项级数收敛性判别法主要有根式判别法、比式判别法、阿贝尔判别法、积分判别法和对数判别法等。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式