limx趋于0时的极限是多少??
展开全部
当x趋近于inf的情况下,f(x)=inf=g(x)=inf;
所以:上下同时求导:f'(x)=1/x, g'(x)=1
于是有:lim(x->inf) = f'(x)/g'(x) = lim(x->inf):(1/x)/1 =0/1 =1
所以结果是‘0’
扩展资料
极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中。
都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
(1)函数在 点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在 点导数的定义,是函数值的增量 与自变量的增量 之比 ,当 时的极限。
(3)函数在 点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列 的极限来定义的。
(5)广义积分是定积分其中 为,任意大于 的实数当 时的极限,等等。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询