已知矩阵A的特征值为k,求A的平方的特征值。

 我来答
WskTuuYtyh
2023-07-03 · TA获得超过1万个赞
知道大有可为答主
回答量:3148
采纳率:84%
帮助的人:1352万
展开全部
题:已知矩阵A的特征值为k,求A的平方的特征值。
解:由以下命题3知,上题答案为k^2.

以下摘自我的某个答题,未加改动。
命题3:(证明见后)
若方阵A有特征值k, 对应于特征向量ξ,当f(A)为A的幂级数(允许负幂和形式幂级数)时,f(A)的有对应于ξ的特征值f(k).

注释:以下命题1,2是为证明命题3。
命题1:k为矩阵A的非零特征值,则k的负一次幂是A逆的特征值对吗?
答:在前提A可逆之下,此命题成立。否则,视A逆为广义逆,估计也成立,我未加严格论证。
我们这里设A可逆。
命题1证明如下:
设方阵A有特征值k, 对应于特征向量ξ,即有Aξ=kξ,故Eξ=A^(-1)*kξ,故A^(-1)*ξ=1/k * ξ
命题一得证。

命题2:方阵A有特征值k, 对应于特征向量ξ,f(A)是关于A的多项式,则:
f(A)的有对应于ξ的特征值f(k).
命题2之证明:设A的特征值k对应于特征向量ξ,即有Aξ=kξ
故AAξ=kAξ=k*kξ,递推得 A^nξ=k^nξ
同理 f(A)ξ=f(k)ξ。得征。

依命题1,命题2,有命题3:
若方阵A有特征值k, 对应于特征向量ξ,当f(A)为A的幂级数(允许负幂和形式幂级数)时,f(A)的有对应于ξ的特征值f(k).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式