已知函数f(x)= f'(π/4)cosx+sinx,则f(π/4)的值
1个回答
展开全部
f'(π/4) 是一个确定的 常数了,不要被误导了
f(x)求导得到
f'(π/4)
=-f'(π/4)*sin(π/4)+cos(π/4)
=-f'(π/4)*√2/2+√2/2
(1+√2/2)f'(π/4)=√2/2
f'(π/4)=√2/2/(1+√2/2)=√2/(2+√2)
f(π/4)
=f'(π/4)*cos(π/4)+sin(π/4)
=f'(π/4)*√2/2+√2/2
=(f'(π/4)+1)*√2/2
=(√2/(2+√2)+1)*√2/2
=1
f(x)求导得到
f'(π/4)
=-f'(π/4)*sin(π/4)+cos(π/4)
=-f'(π/4)*√2/2+√2/2
(1+√2/2)f'(π/4)=√2/2
f'(π/4)=√2/2/(1+√2/2)=√2/(2+√2)
f(π/4)
=f'(π/4)*cos(π/4)+sin(π/4)
=f'(π/4)*√2/2+√2/2
=(f'(π/4)+1)*√2/2
=(√2/(2+√2)+1)*√2/2
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询