已知x+y+z=1,x,y,z大于0,求证:x^2/(y+z)+y^2/(z+x)+z^2/(y+x)大于等于1/2
2个回答
展开全部
利用柯西不等式
[x^2/(y+z)+y^2/(x+z)+z^2/(y+x)][(y+z)+(x+z)+(x+y)}>=(√[x^2/(y+z)*(y+z)]+√[y^2/(y+z)*(y+z)]+√[z^2/(x+y)*(x+y)])^2=(x+y+z)^2
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)>=(x+y+z)^2/(2x+2y+2z)=1/2
等号当且仅当x=y=z=1/3时成立
[x^2/(y+z)+y^2/(x+z)+z^2/(y+x)][(y+z)+(x+z)+(x+y)}>=(√[x^2/(y+z)*(y+z)]+√[y^2/(y+z)*(y+z)]+√[z^2/(x+y)*(x+y)])^2=(x+y+z)^2
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)>=(x+y+z)^2/(2x+2y+2z)=1/2
等号当且仅当x=y=z=1/3时成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询