2个回答
展开全部
1.cosα+2sinα=-√5,平方得(cosα)^2+4sinαcosα+4(sinα)^2=5
注意到(cosα)^2+(sinα)^2=1,则
(cosα)^2+4sinαcosα+4(sinα)^2=5[(cosα)^2+(sinα)^2]
即(sinα)^2-4sinαcosα+4(cosα)^2=0,(sinα-2cosα)^2=0,tanα=2,选B.
2.(cosα)^2+(sinα)^2=1,则(cosα)^2=1-(sinα)^2
(cosα)^2=(1-sinα)(1+sinα),(1-sinα)/cosα=cosα/(1+sinα),
所以),(sinα-1)/cosα=-cosα/(1+sinα)=2,选C.
3.sinα=(k+1)/(k-3),cosα=(k-1)/(k-3),则cotα=(k-1)/(k+1)
因为(cosα)^2+(sinα)^2=1,
所以[(k+1)/(k-3)]^2+[(k-1)/(k-3)]^2=1,即(k+1)^2+(k-1)^2=(k-3)^2
k=1或k=-7,则有cotα=0或4/3,选B.
注意到(cosα)^2+(sinα)^2=1,则
(cosα)^2+4sinαcosα+4(sinα)^2=5[(cosα)^2+(sinα)^2]
即(sinα)^2-4sinαcosα+4(cosα)^2=0,(sinα-2cosα)^2=0,tanα=2,选B.
2.(cosα)^2+(sinα)^2=1,则(cosα)^2=1-(sinα)^2
(cosα)^2=(1-sinα)(1+sinα),(1-sinα)/cosα=cosα/(1+sinα),
所以),(sinα-1)/cosα=-cosα/(1+sinα)=2,选C.
3.sinα=(k+1)/(k-3),cosα=(k-1)/(k-3),则cotα=(k-1)/(k+1)
因为(cosα)^2+(sinα)^2=1,
所以[(k+1)/(k-3)]^2+[(k-1)/(k-3)]^2=1,即(k+1)^2+(k-1)^2=(k-3)^2
k=1或k=-7,则有cotα=0或4/3,选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询