数学问题答案,急用!!!
已知:△ABC的∠B和∠C的平分线BE、CF交于点I,求证:(1)∠BIC=180°—1/2(∠ABC+∠ACB)(2)∠BIC=90°+1/2∠A...
已知:△ABC的∠B和∠C的平分线BE、CF交于点I,求证:
(1)∠BIC=180°—1/2(∠ABC+∠ACB)
(2)∠BIC=90°+1/2∠A 展开
(1)∠BIC=180°—1/2(∠ABC+∠ACB)
(2)∠BIC=90°+1/2∠A 展开
3个回答
展开全部
证明:(1)
∵在△BIC中,∠BIC+∠IBC∠ICB=180°
∴∠BIC=180°—(∠IBC+∠ICB)
又∵BE平分∠B,CF平分∠C,
即∠IBC=1/2∠ABC,∠ICB=1/2∠ACB
∴∠BIC=180°—1/2(∠ABC+∠ACB)
(2)
∵在△ABC中,∠A+∠ABC+∠ACB=180°
∴∠ABC+∠ACB=180°-∠A
代入上式
∠BIC=180°—1/2(∠ABC+∠ACB)
=180-1/2(180°-∠A)
=90°+1/2∠A
即 :∠BIC=90°+1/2∠A
∵在△BIC中,∠BIC+∠IBC∠ICB=180°
∴∠BIC=180°—(∠IBC+∠ICB)
又∵BE平分∠B,CF平分∠C,
即∠IBC=1/2∠ABC,∠ICB=1/2∠ACB
∴∠BIC=180°—1/2(∠ABC+∠ACB)
(2)
∵在△ABC中,∠A+∠ABC+∠ACB=180°
∴∠ABC+∠ACB=180°-∠A
代入上式
∠BIC=180°—1/2(∠ABC+∠ACB)
=180-1/2(180°-∠A)
=90°+1/2∠A
即 :∠BIC=90°+1/2∠A
展开全部
证明:(1)由题意易知,∠IBC=1/2∠ABC,∠ICB=1/2∠ACB。
由于∠BIC=180°-∠IBC-∠ICB,
因此∠BIC=180°—1/2(∠ABC+∠ACB)
(2)易知1/2∠A +1/2(∠ABC+∠ACB)=90°,结合上一问结论有:
∠BIC=180°—1/2(∠ABC+∠ACB)
= 90°+90°—1/2(∠ABC+∠ACB)
= 90°+1/2∠A
证毕
由于∠BIC=180°-∠IBC-∠ICB,
因此∠BIC=180°—1/2(∠ABC+∠ACB)
(2)易知1/2∠A +1/2(∠ABC+∠ACB)=90°,结合上一问结论有:
∠BIC=180°—1/2(∠ABC+∠ACB)
= 90°+90°—1/2(∠ABC+∠ACB)
= 90°+1/2∠A
证毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-08-13
展开全部
解:在ABC中,∠ABC和∠ACB的平分线相交于点I
所以∠IBC=1/2∠ABC,∠ICB=1/2∠
所以∠BIC
=180°-(1/2∠ABC+1/2∠ACB)
=180°-1/2(∠ABC+∠ACB)
=180°-1/2(180°-∠A)
=180°-90°+1/2∠A
=90°+1/2∠A
所以∠IBC=1/2∠ABC,∠ICB=1/2∠
所以∠BIC
=180°-(1/2∠ABC+1/2∠ACB)
=180°-1/2(∠ABC+∠ACB)
=180°-1/2(180°-∠A)
=180°-90°+1/2∠A
=90°+1/2∠A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询