三角形ABC中,内角A B C的对边分别为a b c,已知a b c成等比数列,cosB=3/4 (1)求cotA+cotc的值 20
1个回答
展开全部
已知a b c成等比数列.sinB=√7/4,
b^2=ac,b/a=c/b,
根据正弦定理,
sinB/sinA=b/a,
sinC/sinB=c/b,
sinB/sinA=sinC/sinB,
(sinB)^2=sinA*sinC=7/16,
cotA+cotC=cosA/sinA+cosC/sinC=(sinCcosA+sinAcosC)/(sinA*sinC)
=sin(A+C)/(sinA*sinC)
=sinB/(7/16)
=(√7/4)/(7/16)
=4√7/7.
b^2=ac,b/a=c/b,
根据正弦定理,
sinB/sinA=b/a,
sinC/sinB=c/b,
sinB/sinA=sinC/sinB,
(sinB)^2=sinA*sinC=7/16,
cotA+cotC=cosA/sinA+cosC/sinC=(sinCcosA+sinAcosC)/(sinA*sinC)
=sin(A+C)/(sinA*sinC)
=sinB/(7/16)
=(√7/4)/(7/16)
=4√7/7.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询