已知a1,a2,a3,a4成等比数列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4?
3个回答
展开全部
设公比是q
a2=a1·q
a3=a1·q²
a4=a1·q³
a1-a2=a1-a1·q
=a1(1-q)
=36
a3-a4=a1·q²-a1·q³
=a1·q²·(1-q)
=4
(a3-a4)/(a1-a2)=q²=1/9
q=±1/3
当q=1/3时,(1-1/3)a1=36
a1=54
则a2=18,a3=6,a4=2
当q=-1/3时,[1-(-1/3)]a1=36
a1=27
则a2=-9,a3=3,a4=-1
终上所述:
a1、a2、a3、a4的值为:a1=54,a2=18,a3=6,a4=2
或:a1=27,a2=-8,a3=3,a4=-1
祝您学习愉快
a2=a1·q
a3=a1·q²
a4=a1·q³
a1-a2=a1-a1·q
=a1(1-q)
=36
a3-a4=a1·q²-a1·q³
=a1·q²·(1-q)
=4
(a3-a4)/(a1-a2)=q²=1/9
q=±1/3
当q=1/3时,(1-1/3)a1=36
a1=54
则a2=18,a3=6,a4=2
当q=-1/3时,[1-(-1/3)]a1=36
a1=27
则a2=-9,a3=3,a4=-1
终上所述:
a1、a2、a3、a4的值为:a1=54,a2=18,a3=6,a4=2
或:a1=27,a2=-8,a3=3,a4=-1
祝您学习愉快
展开全部
设公比q
a1-a2=36
a3-a4=q^2*(a1-a2)=4
两式相除,得到 q^2=1/9
q=-1/3 或1/3
q=-1/3时:
a1-a2=a1(1-q)=a1*(4/3)=36
a1=27
a2=a1*q=27*(-1/3)=-9
a3=a1*q^2=27*(1/9)=3
a4=a1*q^3=27*(-1/27)=-1
q=1/3时:
a1-a2=a1(1-q)=a1*(2/3)=36
a1=54
a2=a1*q=54*(1/3)=18
a3=a1*q^2=54*(1/9)=6
a4=a1*q^3=54*(1/27)=2
a1-a2=36
a3-a4=q^2*(a1-a2)=4
两式相除,得到 q^2=1/9
q=-1/3 或1/3
q=-1/3时:
a1-a2=a1(1-q)=a1*(4/3)=36
a1=27
a2=a1*q=27*(-1/3)=-9
a3=a1*q^2=27*(1/9)=3
a4=a1*q^3=27*(-1/27)=-1
q=1/3时:
a1-a2=a1(1-q)=a1*(2/3)=36
a1=54
a2=a1*q=54*(1/3)=18
a3=a1*q^2=54*(1/9)=6
a4=a1*q^3=54*(1/27)=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1 = a2 + 36
a3 = a4 + 4
设公比为k,a2 = ka1, a3 = k*k*a1, a4=k*k*k*a1
所以,
a1(1-k) = 36
a1*k*k*(1-k) = 4
k*k = 1/9
k = 1/3
所以,a1 = 54, a2 = 18, a3 = 6,a4 = 2
a3 = a4 + 4
设公比为k,a2 = ka1, a3 = k*k*a1, a4=k*k*k*a1
所以,
a1(1-k) = 36
a1*k*k*(1-k) = 4
k*k = 1/9
k = 1/3
所以,a1 = 54, a2 = 18, a3 = 6,a4 = 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询