求值域 f(x)=根号下(1+x)+根号下(3-x)
1个回答
展开全部
y=√(1+x)+√(3-x)
根号大于等于0,所以显然y>=0
y²=1+x+2√(1+x)(3-x)+3-x
=4+2√(-x²+2x+3)
定义域
1+x>=0
3-x>=0
-1<=x<=3
-x²+2x+3
=-(x-1)²+4
-1<=x<=3
所以x=1,-x²+2x+3最大=4
x=-1或3,-x²+2x+3最小=0
0<=-x²+2x+3<=4
0<=√(-x²+2x+3)<=2
0<=2√(-x²+2x+3)<=4
4<=4+2√(-x²+2x+3)<=8
4<=y²<=8
2<=y<=202
值域 [2,2√2]
根号大于等于0,所以显然y>=0
y²=1+x+2√(1+x)(3-x)+3-x
=4+2√(-x²+2x+3)
定义域
1+x>=0
3-x>=0
-1<=x<=3
-x²+2x+3
=-(x-1)²+4
-1<=x<=3
所以x=1,-x²+2x+3最大=4
x=-1或3,-x²+2x+3最小=0
0<=-x²+2x+3<=4
0<=√(-x²+2x+3)<=2
0<=2√(-x²+2x+3)<=4
4<=4+2√(-x²+2x+3)<=8
4<=y²<=8
2<=y<=202
值域 [2,2√2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询