二项式定理公式是什么样的? 10

 我来答
人生如雾亦如梦
2006-12-29 · TA获得超过509个赞
知道小有建树答主
回答量:358
采纳率:0%
帮助的人:207万
展开全部
二项式定理论述了(a+b)n的展开式。人们只要有初步的代数知识和足够的毅力,便可以得到如下公式,

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

等等。对于(a+b)12,人们显然希望不必经由(a+b)十几次自乘的冗长计算,就能够发现其展开式中a7b5的系数。早在牛顿出生之前很久,人们便已提出并解决了二项式的展开式问题。中国数学家杨辉早在13世纪就发现了二项式的秘密,但他的著作直到近代才为欧洲人所知。维埃特在其《分析术引论》前言的命题XI中也同样论证了二项式问题。但这一伟大发现通常是以布莱兹·帕斯卡的名字命名的。帕斯卡注意到,二项式的系数可以很容易地从我们现在称为“帕斯卡三角”的排列中得到:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

等等

在这个三角形中,每一个新增数字都等于其上左右两个数字之和。因此,根据帕斯卡三角,下一行的数值为

1 8 28 56 70 56 28 8 1

例如,表值56就等于其上左右两个数字21+35之和。

帕斯卡三角与(a+b)8展开式之间的联系是非常直接的,因为三角形的最后一行数值为我们提供了必要的系数,即

(a+b)8=a8+8a7b+28a6b2+56a5b3

+70a4b4+56a3b5+28a2b6+8ab7+b8

我们只要将三角形的数值再向下延伸几行,就可以得到(a+b)12展开式中a7b5的系数为792。所以,帕斯卡三角的实用性是非常明显的。

年轻的牛顿经过对二项展开式的研究,发明了一个能够直接导出二项式系数的公式,而不必再繁琐地延伸三角形到所需要的那行了。并且,他对模式的持续性的固有信念使他认为,能够正确推导出诸如(a+b)2或(a+b)3

这种形式的二项式。

关于分数指数和负数指数问题,在此还需多说一句。我们知道,在初等

这些关系。

以下所列牛顿的二项展开式公式是他在1676年写给其同时代伟人戈特弗里德·威廉·莱布尼兹的一封信中阐明的(此信经由皇家学会的亨利·奥尔登伯格转交)。牛顿写道:

项式的“指数是整数还是(比如说)分数,是正数还是负数”的问题。公式中的A、B、C等表示展开式中该字母所在项的前一项。

对于那些见过现代形式的二项展开式的读者来说,牛顿的公式可能显得过于复杂和陌生。但只要仔细研究一下,就可以解决读者的任何疑问。我们首先来看,



也许,这种形式看起来就比较熟悉了。

我们不妨应用牛顿的公式来解一些具体例题。例如,在展开(1+x)3时,

这恰恰就是帕斯卡三角的非列系数。并且,由于我们的原指数是正整数3,所以,展开式到第四项结束。

但是,当指数是负数时,又有一个完全不同的情况摆在牛顿面前。例如,展开(1+x)-3,根据牛顿公式,我们得到

或简化为

方程右边永远没有终止。应用负指数定义,这一方程就成为

或其等价方程

牛顿将上式交叉相乘并消去同类项,证实

(1+3x+3x2+x3)(1+3x+6x2-10x3+15x4-……)=1

牛顿用等式右边的无穷级数自乘,也就是求这无穷级数的平方,以检验这一貌似奇特的公式,其结果如下:

所以

这就证实了

与牛顿原推导结果相同。

牛顿写道;“用这一定理进行开方运算非常简便。”例如,假设我们求

现在,将等式右边的平方根代入前面标有()符号的二项展开式中的前6项,当然,此处要用29替换原公式中的x,因而,我

了前6个常数项。如果我们取二项展开式中更多的项,我们就会得到更加精确的近似值。并且,我们还可以用同样的方法求出三次根、四次根,等等,

续演算。

别奇怪的。而真正令人吃惊的是,牛顿的二项式定理精确地告诉我们应该采用哪些分数,而这些分数则是以一种完全机械的方式得出的,无须任何特殊的见解与机巧。这显然是一个求任何次方根的有效而巧妙的方法。

二项式定理是我们即将讨论的伟大定理的两个必要前提之一。另一个前提是牛顿的逆流数,也就是我们今天所说的积分。但是,对逆流数的详尽说明属于微积分问题,超出了本书的范围。然而,我们可以用牛顿的话来阐述其重要定理,并举一两个例子来加以说明。

牛顿在1669年中撰著的《运用无穷多项方程的分析学》一书中提出了逆流数问题,但这部论著直到1711年才发表。这是牛顿第一次提出逆流数问题,他将他的这部论文交给几个数学同事传阅。比如,我们知道,艾萨克·巴罗就曾看到过这部论文,他在1669年7月20日给他一个熟人的信里写道:“……我的一个朋友……在这些问题上很有天分,他曾带给我几篇论文。”巴罗或《分析学》一书的任何其他读者遇到的第一个法则如下。

设任意曲线AD的底边为AB,其垂直纵边为BD,设AB=x,

BD=y,并设a、b、c等为已知量,m和n为整数。则:

到x点之内的图形的面积。根据牛顿法则,这一图形的面积为

按照牛顿公式,面积为12x2,对这一结果,可以很容易地用三角形面积公式

牛顿又进一步说明了《分析学》一书的法则2,“如果y值是由几项之和组成的,那么,其面积也同样等于每一项面积之和。”例如,他写道,曲

那么,牛顿所采用的两个工具就是:二项式定理和求一定曲线下面积的流数法。他运用这两个工具,可以得心应手地解决许多复杂的数学与物理问题,而我们将要看到的是牛顿如何应用这两个工具,使一个古老的问题获得了全新的生命:计算π的近似值。我们在第四章的后记中,追溯了这一著名数字的某些历史,确认了某些学者,如阿基米德、韦达和卢道尔夫·冯瑟伦在计算更精确的π近似值方面所作出的贡献。1670年左右,这个问题引起了艾萨克·牛顿的注意。他运用他奇妙的新方法,对这一古老问题进行研究,并取得了辉煌的成就。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
匿名用户
2006-12-30
展开全部
(a+b)^n=a^n+C1n*a^(n-1)*b...+Crn*a^(n-r)*b^r...+b^n
(试中Cxy中的x在C的右上角,y在C的右下角。)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
納哖夏
2013-06-05
知道答主
回答量:21
采纳率:0%
帮助的人:13.9万
展开全部
(a b)^n=C(n,0)a^n C(n,1)a^(n-1)*b C(n,2)a^(n-2)*b^2 ... C(n,n)b^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱唱歌颖0G6
2020-02-22 · TA获得超过393个赞
知道答主
回答量:274
采纳率:0%
帮助的人:15万
展开全部

二项式定理的公式是什么呢?

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冠片N
高粉答主

2020-03-10 · 繁杂信息太多,你要学会辨别
知道答主
回答量:11.8万
采纳率:1%
帮助的人:6165万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式