
设m为实数,且tanα,tanβ是方程mx^2+(2m-3)x+(m-2)=0的两实数根,求tan(α+β)的最小值。
1个回答
展开全部
tanx,tany是方程 mz^2+(2m-3)z+m-2=0 ① 的两根
由根和系数的关系
tanx+tany=-(2m-3)/2
tanx × tany=(m-2)/m
tan(x+y)=[-(2m-3)/2]/[=(m-2)/m]=3/2-m
因为方程①有实数根
所以它的判别式△=(2m-3)^2-4m(m-2)
=4m^2-12m+9-4m^2+8m≥0
m≤9/4 ②
因为 tan(x+y)=3/2-m 当 ② 中 m 最大=9/4 时
tan(x+y)的最小值=3/2-m=3/2-9/4=-3/4
由根和系数的关系
tanx+tany=-(2m-3)/2
tanx × tany=(m-2)/m
tan(x+y)=[-(2m-3)/2]/[=(m-2)/m]=3/2-m
因为方程①有实数根
所以它的判别式△=(2m-3)^2-4m(m-2)
=4m^2-12m+9-4m^2+8m≥0
m≤9/4 ②
因为 tan(x+y)=3/2-m 当 ② 中 m 最大=9/4 时
tan(x+y)的最小值=3/2-m=3/2-9/4=-3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询