已知sin(3π+θ)=1/4,求cos(π+θ)/cosθ[cos(π+θ)-1]再+cos(θ-2π)/cos(θ+2π)cos(π+θ)+cos(-θ)
1个回答
展开全部
为输入方便起见
令θ=a,
则sin(3π+θ)=-sinθ=-sina=1/4,sina=-1/4
cos(π+θ)/(cosθ[cos(π+θ)-1])+cos(θ-2π)/(cos(θ+2π)cos(θ+π)+cos(-θ))
=-cosa/[cosa(-cosa-1)]+cosa/[cosa(-cosa)+cosa]
=1/(1+cosa)+1/(1-cosa)
=(1-cosa)+(1+cosa)/(1-cos^2a)
=2/sin^2a
所以,cos(π+θ)/(cosθ[cos(π+θ)-1])+cos(θ-2π)/(cos(θ+2π)cos(θ+π)+cos(-θ))
=2/(1/16)=32
令θ=a,
则sin(3π+θ)=-sinθ=-sina=1/4,sina=-1/4
cos(π+θ)/(cosθ[cos(π+θ)-1])+cos(θ-2π)/(cos(θ+2π)cos(θ+π)+cos(-θ))
=-cosa/[cosa(-cosa-1)]+cosa/[cosa(-cosa)+cosa]
=1/(1+cosa)+1/(1-cosa)
=(1-cosa)+(1+cosa)/(1-cos^2a)
=2/sin^2a
所以,cos(π+θ)/(cosθ[cos(π+θ)-1])+cos(θ-2π)/(cos(θ+2π)cos(θ+π)+cos(-θ))
=2/(1/16)=32
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询