3个回答
展开全部
如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.
(I)证明:PB⊥CD;
(II)求点A到平面PCD的距离.
(I)证明:取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE
由△PAB和△PAD都是等边三角形知PA=PB=PD
∴OA=OB=OD,即O为正方形ABED对角线的交点
∴OE⊥BD,∴PB⊥OE
∵O是BD的中点,E是BC的中点,∴OE∥CD
∴PB⊥CD;
(II)取PD的中点F,连接OF,则OF∥PB
由(I)知PB⊥CD,∴OF⊥CD,
∵OD=1/2
BD=根号2
OP=根号下PD^2-OD^2=根号2
∴△POD为等腰三角形,∴OF⊥PD
∵PD∩CD=D,∴OF⊥平面PCD
∵AE∥CD,CD⊂平面PCD,AE⊈平面PCD,∴AE∥平面PCD
∴O到平面PCD的距离OF就是A到平面PCD的距离
∵OF=1/2PB=1
∴点A到平面PCD的距离为1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询