微分与积分是什么,有区别么?
区别:
1、数学表达不同:
微分:导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。
积分:设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。
2、几何意义不同:
微分:设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
积分:积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。
扩展资料:
笼统的说,微分和积分是对函数的一种变换——从已知函数经过内某种过程变成一容个新的函数,是一种“定义域”和“值域”都是函数集合的映射(对应)。
如果不考虑相差一个常数的话,微分和积分互为逆变换:对一个函数先求微分,再求积分,等于其本身;对一个函数先求积分,再求微分,等于其本身。
参考资料:
微分:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分。
积分:积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
微分与积的区别如下::
1、产生时间不同:
微分:早在希腊时期,人类已经开始讨论「无穷」、「极限」以及「无穷分割」等概念。这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论证和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步 。
积分:公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。
2、数学表达不同:
微分:导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。
积分:设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。
3、几何意义不同:
微分:设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
积分:积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。
推荐于2017-11-26
【一】谓积累时差。《谷梁传·文公六年》:“闰月者,附月之余日也,积分而成于月者也。”
范宁
注:“积众月之余分,以成此月。”
【二】元
、
明
、
清
三代国子监考核学生学习成绩、选拔人才的方法。①《元史·选举志一》:“
泰定
三年夏六月,更积分而为贡举,并依
世祖
旧制。”
②明·苏伯衡
《送楼生用章赴国学序》:“业成然后积分,积分及格然后私试。”③《清史稿·选举志一》:“积分历事之法,国初行之。监生坐监期满,拨历部院练习政体。”
【三】(integration;integral)数学的一门学科;找出被积函数中一函数或解一微分方程的演算。
【四】(cumulative
scoring)比赛分数的总和;一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。
微积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x)
+
C]'
=
f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
积分
integral
从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)=
f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作
。如果F(x)是f(x)的一个原函数,则
,其中C为任意常数。例如,
定积分是以平面图形的面积问题引出的。如右上图,y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b
,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面积S。把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b]上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi]的取法都无关的常数I,使得,其中则称I为f(x)在[a,b]上的定积分,表为即
称[a,b]为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式。
以上讲的是传统意义上的积分也即黎曼积分。