(2013•株洲)已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动

点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP... 点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
展开
 我来答
234824255
2014-02-21 · TA获得超过8780个赞
知道答主
回答量:2240
采纳率:100%
帮助的人:107万
展开全部

(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,

∴∠APQ=∠C.

在△APQ与△ABC中,

∵∠APQ=∠C,∠A=∠A,

∴△AQP∽△ABC.

(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.

∵∠BPQ为钝角,

∴当△PQB为等腰三角形时,

(I)当点P在线段AB上时,如题图1所示.

∵∠QBP为钝角,

∴当△PQB为等腰三角形时,只可能是PB=BQ,

由(1)可知,△AQP∽△ABC,

(II)当点P在线段AB的延长线上时,如题图2所示.

∵∠QBP为钝角,

∴当△PQB为等腰三角形时,只可能是PB=BQ.

∵BP=BQ,∴∠BQP=∠P,

∵∠BQP+∠AQB=90°,∠A+∠P=90°,

∴∠AQB=∠A,

∴BQ=AB,

∴AB=BP,点B为线段AP中点,

∴AP=2AB=2×3=6.

综上所述,当△PQB为等腰三角形时,AP的长为3/5或者6

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式