已知方程X^2+Y^2-2X-4Y+m=0(1)若此方称表示圆,求m的取值范围(2)若(1)中的圆与直线
+2Y-4=0相交于M、N两点且OM垂直于ON(O为坐标原点)求m的值(3)在(2)的条件下,求以MN为直径的方程圆的方程?的求解过程∵OM*ON=0得出:x1x2+y1...
+2Y-4=0相交于M、N两点且OM垂直于ON(O为坐标原点)求m的值(3)在(2)的条件下,求以MN为直径的方程圆的方程?的求解过程∵OM*ON
=0得出:x1x2+y1y2=0而x1x2=(4-2y1)•(4-2y2)=16-8(y1+y2)+4y1y2这步看不懂尤其是6-8(y1+y2)+4y1y2更看不懂。请高人指教! 展开
=0得出:x1x2+y1y2=0而x1x2=(4-2y1)•(4-2y2)=16-8(y1+y2)+4y1y2这步看不懂尤其是6-8(y1+y2)+4y1y2更看不懂。请高人指教! 展开
2个回答
展开全部
(1)、x^2+y^2-2x-4y+m=0,
——》(x-1)^2+(y-2)^2=5-m>0,
——》m<5;
(2)、设M为(x1,y1),N为(x2,y2),
直线x+2y-4=0,——》x=4-2y,
代入圆的方程,得:(4-2y-1)^2+(y-2)^2=5-m,
整理得:5y^2-16y+(m+8)=0,
——》y1+y2=16/5,y1*y2=(m+8)/5,
M、N在直线x+2y-4=0上,
——》x1=4-2y1、x2=4-2y2,
kom=y1/x1,kon=y2/x2,
OM⊥ON,
——》kom*kon=-1=y1*y2/x1*x2,
——》x1*x2+y1*y2=0,
——》(4-2y1)*(4-2y2)+y1*y2=16-8(y1+y2)+5y1*y2=16-8*16/5+5*(m+8)/5=0,
——》m=8/5;
(3)、m=8/5代入方程得:5y^2-16y+(8/5+8)=0,
解得:y1=12/5,y2=4/5,
——》x1=4-2y1=-4/5,x2=4-2y2=12/5,
即M为(-4/5,12/5),N为(12/5,4/5),
——》MN中点坐标为(4/5,8/5),
以MN为直径的方程圆的方程为:
(x-4/5)^2+(y-8/5)^2=(-4/5-4/5)^2+(12/5-8/5)^2=16/5,
即:5x^2+5y^2-8x-16y=0。
——》(x-1)^2+(y-2)^2=5-m>0,
——》m<5;
(2)、设M为(x1,y1),N为(x2,y2),
直线x+2y-4=0,——》x=4-2y,
代入圆的方程,得:(4-2y-1)^2+(y-2)^2=5-m,
整理得:5y^2-16y+(m+8)=0,
——》y1+y2=16/5,y1*y2=(m+8)/5,
M、N在直线x+2y-4=0上,
——》x1=4-2y1、x2=4-2y2,
kom=y1/x1,kon=y2/x2,
OM⊥ON,
——》kom*kon=-1=y1*y2/x1*x2,
——》x1*x2+y1*y2=0,
——》(4-2y1)*(4-2y2)+y1*y2=16-8(y1+y2)+5y1*y2=16-8*16/5+5*(m+8)/5=0,
——》m=8/5;
(3)、m=8/5代入方程得:5y^2-16y+(8/5+8)=0,
解得:y1=12/5,y2=4/5,
——》x1=4-2y1=-4/5,x2=4-2y2=12/5,
即M为(-4/5,12/5),N为(12/5,4/5),
——》MN中点坐标为(4/5,8/5),
以MN为直径的方程圆的方程为:
(x-4/5)^2+(y-8/5)^2=(-4/5-4/5)^2+(12/5-8/5)^2=16/5,
即:5x^2+5y^2-8x-16y=0。
追问
请问 你写的kom和kon是怎莫回事,尽量用简单点的意思解释一下。O(∩_∩)O~
追答
kom是OM的斜率,
kon是ON的斜率。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询