已知数列{an}中,a1=1,前n项和Sn=(n+2)/3an。求{an}的通项公式。设{1/an

}的前n项和为Tn,试比较Tn与2的大小关系,并说明理由。... }的前n项和为Tn,试比较Tn与2的大小关系,并说明理由。 展开
 我来答
忠鸣惊人
2014-01-03 · TA获得超过4万个赞
知道小有建树答主
回答量:2.1万
采纳率:95%
帮助的人:2449万
展开全部
证明:a1=1=1*2/2 a2=3=2*3/2, a3=6=3*4/2,
对n=1,2,3时都正确(实际上只要验证n=1即可)
设n<k时成立,即当n<k时 an=n(n+1)/2,
则当n=k时:
Sk=a1+a2+a3+.....+a(k-1)+ak=[(k+2)/3]ak
1*2/2+2*3/2+3*4/2+.....+(k-1)k+ak=[(k+2)/3]ak
(k-1)k(k+1)/(1*2*3)+ak=[(k+2)/3]ak
(k-1)k(k+1)/(1*2*3)=[(k+2)/3-1]ak=[(k-1)/3]ak
ak=k(k+1)/2.
即当n=k时成立,故an=n(n+1)/2.
第二问根据第一问求出的an代入,并化简,得与和2比较,你自己做了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式