1个回答
2013-12-09 · 知道合伙人软件行家
关注
展开全部
1.(2a+c)cosB+bcosC=0
由余弦定理得:(2sinA+sinC)cosB+cosCsinB=0
由三角函数和与差公式得:2sinAcosB+sinA=0
2cosB+sinA=0
B为120
2.延长AB到D使BD=BC,则:
a+c=AD,∠D=∠B/2=60°
在△ADB中:
b/sinD=AD/sin∠ACD
a+c=(b/sinD)sin∠ACD
∠ACD=90°,max(a+c)=2
由余弦定理得:(2sinA+sinC)cosB+cosCsinB=0
由三角函数和与差公式得:2sinAcosB+sinA=0
2cosB+sinA=0
B为120
2.延长AB到D使BD=BC,则:
a+c=AD,∠D=∠B/2=60°
在△ADB中:
b/sinD=AD/sin∠ACD
a+c=(b/sinD)sin∠ACD
∠ACD=90°,max(a+c)=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询