怎么解方程

冰凌之殇ice
2013-12-15 · TA获得超过1182个赞
知道小有建树答主
回答量:187
采纳率:100%
帮助的人:183万
展开全部
方法

⒈估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。

⒉应用等式的性质进行解方程。

⒊合并同类项:使方程变形为单项式

⒋移项:将含未知数的项移到左边,常数项移到右边

例如:3+x=18解:x =18-3 x =15

⒌去括号:运用去括号法则,将方程中的括号去掉。

4x+2(79-x)=192解:4x+158-2x=192 4x-2x+158=192 2x+158=192
2x=192-158 2x=34 x=17

⒎公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。

8.函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。

方程是正向思维。

3步骤

⑴有分母先去分母

⑵有括号就去括号

⑶需要移项就进行移项

⑷合并同类项

⑸系数化为1求得未知数的值

⑹ 开头要写“解”

例如:

3+x=18

解:

x =18-3

x =15

——————————

4x+2(79-x)=192

解:

4x+158-2x=192

4x-2x+158=192

2x+158=192

2x=192-158

2x=34

x=17

——————————

πr=6.28(只取π小数点后两位)

解这道题首先要知道π等于几,π=3.141592……,只取3.14,

解: 3.14r=6.28

r=6.28/3.14=2

不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边有x,为了简便算,可以调换位置。

4一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、分解因式法。

⒈直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)^2=n (n≥0)的 方程,其解为x=±√n+m .

例1.解方程⑴(x-2)^2 =9⑵9x^2-24x+16=11

分析:⑴此方程显然用直接开平方法好做,⑵方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。

⑴解:(x-2)^2=9  ∴x-2=±√9  ∴x-2=±3  ∴x1=3+2 x2=-3+2  ∴x1=5 x2=
-1

⑵解:9x^2;-24x+16=11  ∴(3x-4)^2=11  ∴3x-4=±√11  ∴x=﹙ 4±√11﹚/3
 ∴原方程的解为x1=﹙4﹢√11﹚/3,x2= ﹙4﹣√11﹚/3

2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax^2+bx=-c

将二次项系数化为1:x^2+ba/x = - c/a

方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2= - c/a+(b/2a)^2

方程左边成为一个完全平方式:(x+b/2a)^2 = -c/a﹢﹙b/2a)^2;

当b^2-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚^2;

∴x=﹛﹣b±[√﹙b^2;﹣4ac﹚]﹜/2a(这就是求根公式)

例2.用配方法解方程 3x^2-4x-2=0

解:将常数项移到方程右边 3x^2-4x=2

将二次项系数化为1:x^2-﹙4/3﹚x=

方程两边都加上一次项系数一半的平方:x^2-﹙4/3﹚x+(4/6)^2=? +(4/6)^2

配方:(x-4/6)^2= +(4/6)^2

直接开平方得:x-4/6=± √[? +(4/6)^2 ]

∴x= 4/6± √[? +(4/6)^2 ]

∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b^2-4ac)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x^2-8x=-5

解:将方程化为一般形式:2x^2-8x+5=0  ∴a=2,b=-8,c=5
 b^2-4ac=(-8)^2-4×2×5=64-40=24>0  ∴x=[(-b±√(b^2-4ac)]/(2a)  ∴原方程的解为x?=,x?=
.

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

⑴ (x+3)(x-6)=-8 ⑵ 2x^2+3x=0  ⑶ 6x^2+5x-50=0 (选学) ⑷x2-2(+)x+4=0
(选学)

⑴解:(x+3)(x-6)=-8 化简整理得  x^2-3x-10=0 (方程左边为二次三项式,右边为零)
 (x-5)(x+2)=0 (方程左边分解因式)  ∴x-5=0或x+2=0 (转化成两个一元一次方程)  ∴x^1=5,x^2=-2是原方程的解。

⑵解:2x^2+3x=0  x(2x+3)=0 (用提公因式法将方程左边分解因式)  ∴x=0或2x+3=0
(转化成两个一元一次方程)  ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

⑶解:6x^2+5x-50=0  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
 ∴2x-5=0或3x+10=0  ∴x1=,x2=- 是原方程的解。

⑷解:x2-2(+)x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)  (x-2)(x-2)=0
 ∴x1=2,x2=2是原方程的解。

小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。

但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:元法,配方法,待定系数法)。

具体参考网站:http://baike.baidu.com/link?url=LASjrCVJ_NLY2AjYhQ9Ra2NgTMYt_1u_aghbTTOD1ilMzzT_3rPFIeUvqzCPQAjQ
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
Ivy李悦
2013-12-15 · TA获得超过601个赞
知道答主
回答量:51
采纳率:0%
帮助的人:52万
展开全部
方程有很多种啊~一元一次方程,一元二次方程,二元一次方程。。不知是哪一种呢?还是二元一次方程组?
一元一次的话比较简单,把未知数项放到一起,把常数项放到另一边,然后等价变形,直到未知数的系数为1为止,就解出来啦~
一元二次方程的话,可以先化成固定形式ax2+bx+c的形式,其中a不为零,然后通过求根公式求出两个根(即解),有的是一个根,有的没有根。
二元一次的一般都是方程组,可以用一式-二,把两个未知数先去掉一个,再解。也可以都化成……=0的形式,然后两个式子等起来就OK啦~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
TheSHYYg
2020-10-04 · TA获得超过6.3万个赞
知道答主
回答量:3.8万
采纳率:14%
帮助的人:1910万
展开全部

计算题解方程

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式