设函数f(x)=ax-(1+a^2)x^2,其中a∈(0,3],区间I={x丨f(x)>0}。 1、求I的长度d
(区间(a,b)的长度d定义为b-a)2、设F(a)=a/b+(k-1)a,若F(a)存在减区间,求实数k的取值范围;若F(a)既存在最大值又存在最小值,求实数k的取值范...
(区间(a,b)的长度d定义为b-a)
2、设F(a)=a/b+(k-1)a,若F(a)存在减区间,求实数k的取值范围;若F(a)既存在最大值又存在最小值,求实数k的取值范围。 展开
2、设F(a)=a/b+(k-1)a,若F(a)存在减区间,求实数k的取值范围;若F(a)既存在最大值又存在最小值,求实数k的取值范围。 展开
展开全部
(1) 令 f(x)=ax-(1+a²)x²= -x[(1+a²)x-a]=0,
得 x=0 或 x=a/(1+a²)
因为 a>0,-(1+a²)<0
所以 I={x|0<x<a/(1+a²)}
其长度为 a/(1+a²)
(2) 长度 a/(1+a²)=1/(a+1/a)≤1/[2√(a·1/a)]=1/2
当 a=1/a 即 a=1 时长度最大为1/2,所以a/(1+a²)在(0,1)单调增,在(1,+∞)单调减,
而当k ∈(0,1)时,1-k<1 而 1+k>1,
所以a/(1+a²)在 a=1-k 或 a=1+k 取得最小值。
又 (1-k)/[1+(1-k)²]- (1+k)/[1+(1+k)²]= -3k³/{[1+(1-k)²]·[1+(1+k)²]}<0
所以 I 长度的最小值为 (1-k)/[1+(1-k)²]
得 x=0 或 x=a/(1+a²)
因为 a>0,-(1+a²)<0
所以 I={x|0<x<a/(1+a²)}
其长度为 a/(1+a²)
(2) 长度 a/(1+a²)=1/(a+1/a)≤1/[2√(a·1/a)]=1/2
当 a=1/a 即 a=1 时长度最大为1/2,所以a/(1+a²)在(0,1)单调增,在(1,+∞)单调减,
而当k ∈(0,1)时,1-k<1 而 1+k>1,
所以a/(1+a²)在 a=1-k 或 a=1+k 取得最小值。
又 (1-k)/[1+(1-k)²]- (1+k)/[1+(1+k)²]= -3k³/{[1+(1-k)²]·[1+(1+k)²]}<0
所以 I 长度的最小值为 (1-k)/[1+(1-k)²]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询