已知数列{an}的前n项和Sn,且Sn+1/2an=1
设bn=log3(1-Sn+1),求适合方程1/b1b2+1/b2b3+``````+1/bnbn+1=25/51的n的值...
设bn=log3(1-Sn+1),求适合方程1/b1b2+1/b2b3+``````+1/bnbn+1=25/51的n的值
展开
1个回答
展开全部
Sn+(1/2)an=1
n=1, a1= 2/3
Sn+(1/2)an=1
Sn+(1/2)[Sn-S(n-1)]=1
(3/2)Sn = (1/2)S(n-1) +1
Sn = (1/3)S(n-1) + (2/3)
Sn - 1 = (1/3)(S(n-1) - 1)
{Sn - 1} 是等比数列, q=1/3
Sn - 1 = (1/3)^(n-1) .[S1 - 1]
=-1/3^n
Sn = 1- 1/3^n
bn=log<3>[1-S(n+1) ]
=log<3>[1/3^(n+1) ]
=-(n+1)
1/[bn.b(n+1)] = 1/[(n+1)(n+2)] = 1/(n+1) - 1/(n+2)
1/(b1b2)+1/(b2b3)+...+1/(bnb(n+1)) = 25/51
1/2 - 1/(n+2) = 25/51
1/(n+2) = 1/102
n+2= 102
n=100
n=1, a1= 2/3
Sn+(1/2)an=1
Sn+(1/2)[Sn-S(n-1)]=1
(3/2)Sn = (1/2)S(n-1) +1
Sn = (1/3)S(n-1) + (2/3)
Sn - 1 = (1/3)(S(n-1) - 1)
{Sn - 1} 是等比数列, q=1/3
Sn - 1 = (1/3)^(n-1) .[S1 - 1]
=-1/3^n
Sn = 1- 1/3^n
bn=log<3>[1-S(n+1) ]
=log<3>[1/3^(n+1) ]
=-(n+1)
1/[bn.b(n+1)] = 1/[(n+1)(n+2)] = 1/(n+1) - 1/(n+2)
1/(b1b2)+1/(b2b3)+...+1/(bnb(n+1)) = 25/51
1/2 - 1/(n+2) = 25/51
1/(n+2) = 1/102
n+2= 102
n=100
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询