已知数列{an}中,a1=12,an+1-an=2n,则an/n的最小值为?
2个回答
展开全部
a(n+1) = a(n) + 2n = a(n) + n(n+1) - (n-1)n,
a(n+1)-n(n+1) = a(n)-(n-1)n,
{a(n)-(n-1)n}是首项为a(1)=12,的常数数列。
a(n) - (n-1)n = 12,
a(n) = 12 + (n-1)n.
a(n)/n = 12/n + n -1,
a(n+1)/(n+1) = 12/(n+1) + n,
a(n+1)/(n+1) - a(n)/n = 12/(n+1) - 12/n + 1 = [n(n+1) - 12]/[n(n+1)]
= (n+4)(n-3)/[n(n+1)],
1<=n<=3时,a(n+1)/(n+1) <= a(n)/n, {a(n)/n, 1<=n<=4}单调递减,a(n)/n >= a(4)/4 = 12/4 + 4 - 1 = 6.
n>=4时,a(n+1)/(n+1) > a(n)/n, {a(n)/n, n>=4}单调递增。a(n)/n >= a(4)/4 = 6.
因此,总有,a(n)/n >= a(4)/4 = 6.
a(n)/n的最小值为a(4)/4 = 6.
a(n+1)-n(n+1) = a(n)-(n-1)n,
{a(n)-(n-1)n}是首项为a(1)=12,的常数数列。
a(n) - (n-1)n = 12,
a(n) = 12 + (n-1)n.
a(n)/n = 12/n + n -1,
a(n+1)/(n+1) = 12/(n+1) + n,
a(n+1)/(n+1) - a(n)/n = 12/(n+1) - 12/n + 1 = [n(n+1) - 12]/[n(n+1)]
= (n+4)(n-3)/[n(n+1)],
1<=n<=3时,a(n+1)/(n+1) <= a(n)/n, {a(n)/n, 1<=n<=4}单调递减,a(n)/n >= a(4)/4 = 12/4 + 4 - 1 = 6.
n>=4时,a(n+1)/(n+1) > a(n)/n, {a(n)/n, n>=4}单调递增。a(n)/n >= a(4)/4 = 6.
因此,总有,a(n)/n >= a(4)/4 = 6.
a(n)/n的最小值为a(4)/4 = 6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询