高一数学 基本初等函数
1.已知函数f(x)=ax(a>0,a≠1)在区间[-2,2]上的值不大于2,则函数g(a)=log2a的值域是(注:函数g的2为下脚标)2.设f(x)=|lgx|,若0...
1.已知函数f(x)=ax (a>0,a≠1)在区间[-2,2]上的值不大于2,则函数g(a)=log2a的值域是(注:函数g的2为下脚标)
2.设f(x)=|lgx|,若0<a<b<c且f(a)>f(c)>f(b),则下列关系①ac+1>a+c,②ac+1<a+c,③ac+1=a+c,④ac<1中正确的是____________
请详细解答。谢谢! 展开
2.设f(x)=|lgx|,若0<a<b<c且f(a)>f(c)>f(b),则下列关系①ac+1>a+c,②ac+1<a+c,③ac+1=a+c,④ac<1中正确的是____________
请详细解答。谢谢! 展开
3个回答
展开全部
第一题楼上做了,这里不重复。
根据已知,f(x)=|lgx|可知,函数在(0,1)上单调递减,在(1,+∞)上单调递增。
又有0<a<b<c和f(a)>f(c)>f(b)知,a<1,c>1,而b暂时无法确定。
从而得到,a-1<0,c-1>0
即(a-1)(c-1)<0,这样得到ac+1<a+c。
根据已知,f(x)=|lgx|可知,函数在(0,1)上单调递减,在(1,+∞)上单调递增。
又有0<a<b<c和f(a)>f(c)>f(b)知,a<1,c>1,而b暂时无法确定。
从而得到,a-1<0,c-1>0
即(a-1)(c-1)<0,这样得到ac+1<a+c。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2) 根据图像可知f(a)>0,lga<0,所以lga+lg(c-1)<lg(c-1) , 所以a(c-1)<(c-1) 即 ac+1<a+c ,又f(a)>f(c),f(a)-f(c)>0 即-(lga+lgc)>0, 所以ac<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询