高等数学,对面积的曲面积分。
1个回答
展开全部
6、∑在xoy面上的投影区域D是x^2+y^2≤2x。∑的方程是z=√(x^2+y^2),求出z对x,y的偏导数,dS=√[1+(αz/αx)^2+(αz/αy)^2]dxdy=√2dxdy。
所以,积分=∫∫√(x^2+y^2)×√2dxdy=√2×∫(-π/2到π/2)dθ∫(0到2cosθ) ρ^2dρ=32√2/9。
7、∑的方程有误,应该是z=2-(x^2+y^2)。
补上∑1:z=0,取下侧。∫∫(∑+∑1) x^2dydz+y^2dzdx+z^2dxdy=2∫∫∫(x+y+z)dv=2∫(0到2π)dθ∫(0到√2) dρ∫(0到2-ρ^2) (ρcosθ+ρsinθ+z)ρdz=8π/3。
∫∫(∑1) x^2dydz+y^2dzdx+z^2dxdy=0。
所以,原记得=8π/3。
所以,积分=∫∫√(x^2+y^2)×√2dxdy=√2×∫(-π/2到π/2)dθ∫(0到2cosθ) ρ^2dρ=32√2/9。
7、∑的方程有误,应该是z=2-(x^2+y^2)。
补上∑1:z=0,取下侧。∫∫(∑+∑1) x^2dydz+y^2dzdx+z^2dxdy=2∫∫∫(x+y+z)dv=2∫(0到2π)dθ∫(0到√2) dρ∫(0到2-ρ^2) (ρcosθ+ρsinθ+z)ρdz=8π/3。
∫∫(∑1) x^2dydz+y^2dzdx+z^2dxdy=0。
所以,原记得=8π/3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询