已知函数f(x)=sinxcosx+cos2x-1/2. (1)求函数f(x)周期 (2)求函数f(x)的单调递增区间
1个回答
展开全部
(x)=a[cos^2(x) sinxcosx] b =a[(1 cos2x)/2 (1/2)(2sinxcosx)] b =a[(1/2)sin2x (1/2)cos2x 1/2] b =a[(1/2)(sin2x cos2x)] (a 2b)/2 =(√2a/2)sin(2x π/4) (a 2b)/2 则: (1) 由于:a>0 则: 当f(x)单调递增时, 2kπ-π/2=<2x π/4<=2kπ π/2 即: kπ-3π/8=<x<=kπ π/8 故单调递增区间为:[kπ-3π/8,kπ π/8] (2)由于:x属于[0,π/2] 则:2x π/4属于[π/4,5π/4] 则:sin(2x π/4)属于[-√2/2,1] 由于:a<0 则:f(x)属于:[(√2 1)a/2 b,b] 又:f(x)的值域是[3,4] 则: (√2 1)a/2 b=3 b=4 故: a=2-2√2,b=4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询