函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值与最小值之和为a,求a的值

函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值与最小值之和为a,求a的值.... 函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值与最小值之和为a,求a的值. 展开
 我来答
手机用户64258
2015-01-29 · TA获得超过238个赞
知道答主
回答量:122
采纳率:50%
帮助的人:51.8万
展开全部
由于指数函数和对数函数的单调性是一致的,
故函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上必为单调函数,
在[0,1]上的最大值与最小值之和为a,故有 f(0)+f(1)=(1+0)+(a+loga2)=a,
解得 a=
1
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式