(2011?青浦区一模)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过A(3,0)、B(1,0)、C(

(2011?青浦区一模)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过A(3,0)、B(1,0)、C(0.3)三点,设该二次函数的顶点为G.(1)求这个... (2011?青浦区一模)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过A(3,0)、B(1,0)、C(0.3)三点,设该二次函数的顶点为G.(1)求这个二次函数的解析式及其图象的顶点G的坐标;(2)求tan∠ACG的值;(3)如该二次函数的图象上有一点P,x轴上有一点E,问是否存在以A、G、E、P为顶点的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由. 展开
 我来答
丿绍熟S
推荐于2016-11-21 · TA获得超过101个赞
知道答主
回答量:105
采纳率:0%
帮助的人:60.4万
展开全部
(1)∵A(3,0)、B(1,0)、C(0.3)在二次函数y=ax2+bx+c的图象上,
9a+3b+c=0
a+b+c=0
c=3

解得:
a=1
b=?4
c=3

∴二次函数的解析式为:y=x2-4x+3,
∴y=(x-2)2-1,
∴顶点G(2,-1).

(2)G作GH⊥x轴于点H,GF⊥y轴于点F,
∵G(2,-1)、A(3,0)、B(1,0)、C(0.3),
∴CF=4,GF=2,GH=1,HA=1,在Rt△GFC、Rt△AOC、Rt△GHA中由勾股定理,得
AC2=18,GC2=20,AG2=2
∴△ACG是直角三角形,且∠CAG=90°,
∴tan∠ACG=
AG
AC
=
1
3



(3)当AG为边时,作GH⊥x轴于H,PN⊥x轴于点N
∴∠PNE=∠GHA=90°
∵四边形PEGA是平行四边形,
∴PE=AG,∠PEA=∠GAE,
∴△PNE≌△GHA,
∴PN=GH=1,设P(m,1)
∴m2-4m+3=1,
∴m=2±
2

∴P(2±
2
,1),
当AG为对角线时,不可能.
综上所述,点P的坐标为(2±
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消