大一高数不定积分,一直是我的难题,这次我有遇到了问题,求好心人解答
∫sin³xcosxdx=∫sin³xd(sinx)=(1/4)sin⁴x+C
∫(1/(x²-x-6))dx=(1/5)∫(1/(x-3)-1/(x+2))dx=(1/5)(∫(1/(x-3))d(x-3)-∫(1/(x+2))d(x+2))=(1/5)(ln|x-3|-ln|x+2|)=(1/5)ln|(x-3)/(x+2)|+C
∫cosxe^(sinx)dx=∫e^(sinx)d(sinx)=e^(sinx)+C
∫(dx)/(√x)(1+x)令√x=t,则x=t²所以原式=∫d(t²)/(t(1+t²))=2∫(1/(1+t²))dt=2arctant+C又t=√x,所以答案=2arctan√x+C
∫(1/(1+³√x))dx令t=³√x则x=t³所以有原式=∫d(t³)/(1+t)=3∫t²/(1+t)dt=3∫(t²-1+1)/∫∫(1+t)dt=3∫((t²-1)/(1+t)+1/(1+t))dt=3∫(t-1)+(1/(t+1))dt=3((1/2)(t-1)²+ln|t+1|)+C又t=³√x所以答案是(3/2)(³√x-1)²+ln|³√x+1|)+C
∫⁴√x/(√x+1)dx令t⁴=x则原式=∫t/(t²+1)d(t⁴)=4∫t⁴/(t²+1)dt=4∫(t⁴-1+1)/(t²+1)dt=4∫((t²-1)+1/(t²+1))dt=4((1/3)t³-t)+4arctant+C又t=⁴√x所以答案=4((1/3)(⁴√x)³-⁴√x)+4arctan(⁴√x)+C