(本小题满分12分)设a∈R,函数f(x)= e -x(ax2 + a + 1),其中e是自然对数的底数;(1)求函数f(x
(本小题满分12分)设a∈R,函数f(x)=e-x(ax2+a+1),其中e是自然对数的底数;(1)求函数f(x)的单调区间;(2)当-1<a<0时,求函数f(x)在[1...
(本小题满分12分)设a∈R,函数f(x)= e -x(ax2 + a + 1),其中e是自然对数的底数;(1)求函数f(x)的单调区间;(2)当 -1<a<0 时,求函数f(x)在 [ 1,2 ] 上的最小值。
展开
1个回答
展开全部
(1)由已知:f′(x)=-e-x(ax2+a+1)+ e-x·2ax=e-x(-ax2+2ax-a-1)。 因为e-x>0,只需讨论g(x)=-ax2+2ax-a-1值的情况; 当a=0时,g(x)=-1<0,即f′(x)<0, 所以f(x)在R上是减函数; 当a>0时,g(x)=0的△=4a2-4(a2+a)=-4a<0,所以g(x)<0,即f′(x)<0, 所以f(x)在R上是减函数; (4分) 当a<0时,g(x)=0有两根,且<。 所以,在区间(-∞,)上,g(x)>0,即f′(x)>0,f(x)在此区间上是增函数, 在区间(,)上,g(x)<0,即f′(x)<0,f(x)在此区间上是减函数, 在区间(,+∞)上,g(x)>0,即f′(x)>0,f(x)在此区间上是增函数。 综上所述,当a≥0时,f(x)的单调减区间为(-∞,+∞), 当a<0时,f(x)的单调增区间为(-∞,)和(,+∞), f(x)的单调减区间为(,)。(8分) (2)当-1<a<0时,<1,>2,所以,在[1,2]上,f(x)单调递减, 所以f(x)在[1,2]上的最小值为f(2)=。(12分) |
略 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询