观察下列各式:(a-1)(a+1)=a2-1(a-1)(a2+a+1)=a3+a2+a-a2-a-1=a3-1(a-1)(a3+a2+a+1)=a4+a3+a
观察下列各式:(a-1)(a+1)=a2-1(a-1)(a2+a+1)=a3+a2+a-a2-a-1=a3-1(a-1)(a3+a2+a+1)=a4+a3+a2+a-a3...
观察下列各式:(a-1)(a+1)=a2-1(a-1)(a2+a+1)=a3+a2+a-a2-a-1=a3-1(a-1)(a3+a2+a+1)=a4+a3+a2+a-a3-a2-a-1=a4-1根据观察的规律,解答下列问题:(1)填空:①(a-1)(______)=a6-1;②(a-1)(a11+a10+…+a+1)=______;③(a-1)(an+an-1+an-2+…+a+1)=______.(2)已知:1+22+24+26+…+22006+22008+22010=13×41006?13求:2+23+25+27+…+22007+22009的值.
展开
兹藕受6582
推荐于2016-09-16
·
TA获得超过111个赞
关注
(1)∵a-1)(a+1)=a
2-1,
(a-1)(a
2+a+1)=a
3+a
2+a-a
2-a-1=a
3-1,
(a-1)(a
3+a
2+a+1)=a
4+a
3+a
2+a-a
3-a
2-a-1=a
4-1,
∴①a
5+a
4+a
3+a
2+a+1;
②a
12-1;
③a
n+1-1;
(2)解:因为(2-1)(1+2+2
2+2
3+2
4+…+2
2008+2
2009+2
2010)=2
2011-1,
即1+2+2
2+2
3+2
4+…+2
2008+2
2009+2
2010=2
2011-1.
而
1+22+24+26++22006+22008+22010=×41006?,
所以
2+23+25+27++22007+22009=21011?1?(×41006?)=
22011?×41006?=×41005?.
故答案为:a
5+a
4+a
3+a
2+a+1,a
12-1,a
n+1-1.
收起
为你推荐: