已知数列{an}的前n项和为Sn,且-1,Sn,an+1成等差数列,n∈N*,a1=1.函数f(x)=log3x.(I)求数列{an
已知数列{an}的前n项和为Sn,且-1,Sn,an+1成等差数列,n∈N*,a1=1.函数f(x)=log3x.(I)求数列{an}的通项公式;(II)设数列{bn}满...
已知数列{an}的前n项和为Sn,且-1,Sn,an+1成等差数列,n∈N*,a1=1.函数f(x)=log3x.(I)求数列{an}的通项公式;(II)设数列{bn}满足bn=1(n+3)[f(an)+2],记数列{bn}的前n项和为Tn,试比较Tn与512-2n+5312的大小.
展开
1个回答
展开全部
(I)∵-1,Sn,an+1成等差数列,
∴2Sn=an+1-1①
当n≥2时,2Sn-1=an-1②.
①-②得:2an=an+1-an,
∴
=3.
当n=1时,由①得2S1=2a1=a2-1,又a1=1,
∴a2=3,故
=3.
∴{an}是以1为首项3为公比的等比数列,
∴an=3n-1…(7分)
(II)∵f(x)=log3x,
∴f(an)=log3an=log33n?1=n-1,
bn=
=
=
(
-
),
∴Tn=
[(
-
)+(
-
)+…+(
-
)]
=
(
+
-
-
)
=
-
…(9分)
比较Tn与
-
的大小,只需比较2(n+2)(n+3)与312 的大小即可.…(10分)
2(n+2)(n+3)-312=2(n2+5n+6-156)=2(n2+5n-150)=2(n+15)(n-10),
∵n∈N*,
∴当1≤n≤9时,2(n+2)(n+3)<312,即Tn<
-
;
当n=10时,2(n+2)(n+3)=312,即Tn=
-
;
当n>10且n∈N*时,2(n+2)(n+3)>312,即Tn>
-
.…(14分)
∴2Sn=an+1-1①
当n≥2时,2Sn-1=an-1②.
①-②得:2an=an+1-an,
∴
an+1 |
an |
当n=1时,由①得2S1=2a1=a2-1,又a1=1,
∴a2=3,故
a2 |
a1 |
∴{an}是以1为首项3为公比的等比数列,
∴an=3n-1…(7分)
(II)∵f(x)=log3x,
∴f(an)=log3an=log33n?1=n-1,
bn=
1 |
(n+3)[f(an)+2] |
1 |
(n+1)(n+3) |
1 |
2 |
1 |
n+1 |
1 |
n+3 |
∴Tn=
1 |
2 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n+1 |
1 |
n+3 |
=
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n+2 |
1 |
n+3 |
=
5 |
12 |
2n+5 |
2(n+2)(n+3) |
比较Tn与
5 |
12 |
2n+5 |
312 |
2(n+2)(n+3)-312=2(n2+5n+6-156)=2(n2+5n-150)=2(n+15)(n-10),
∵n∈N*,
∴当1≤n≤9时,2(n+2)(n+3)<312,即Tn<
5 |
12 |
2n+5 |
312 |
当n=10时,2(n+2)(n+3)=312,即Tn=
5 |
12 |
2n+5 |
312 |
当n>10且n∈N*时,2(n+2)(n+3)>312,即Tn>
5 |
12 |
2n+5 |
312 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询