在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若

在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,求证:GM... 在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点, 求证:GM∥平面ABFE. 展开
 我来答
羔羊QM7
2014-10-04 · 超过63用户采纳过TA的回答
知道答主
回答量:114
采纳率:0%
帮助的人:156万
展开全部
见解析

证明:方法一:因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,

所以∠EGF=90°,
△ABC∽△EFG.
由于AB=2EF,因此BC=2FG.
连接AF,由于FG∥BC,FG= BC,
在?ABCD中,M是线段AD的中点,则AM∥BC,
且AM= BC,因此FG∥AM且FG=AM,
所以四边形AFGM为平行四边形,因此GM∥FA.
又FA?平面ABFE,GM?平面ABFE,
所以GM∥平面ABFE.
方法二:因为EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,

∴∠EGF=90°,
△ABC∽△EFG.
由于AB=2EF,∴BC=2FG.
取BC的中点N,连接GN,
因此四边形BNGF为平行四边形,所以GN∥FB.
在?ABCD中,M是线段AD的中点,连接MN,
则MN∥AB.
∵MN∩GN=N,∴平面GMN∥平面ABFE.
又GM?平面GMN,∴GM∥平面ABFE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式