偶函数f(x)(x∈R)满足f(-4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减与递增,则不等式x?f(

偶函数f(x)(x∈R)满足f(-4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减与递增,则不等式x?f(x)<0的解集为()A.(-∞,-4)∪(4,+∞... 偶函数f(x)(x∈R)满足f(-4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减与递增,则不等式x?f(x)<0的解集为(  )A.(-∞,-4)∪(4,+∞)B.(-4,-1)∪(1,4)C.(-∞,-4)∪(-1,0)D.(-∞,-4)∪(-1,0)∪(1,4) 展开
 我来答
呼鸿文r6
2015-01-01 · TA获得超过510个赞
知道答主
回答量:125
采纳率:0%
帮助的人:62.3万
展开全部
解:求x?f(x)<0即等价于求函数在第二、四象限图形x的取值范围.
∵偶函数f(x)(x∈R)满足f(-4)=f(1)=0   
∴f(4)=f(-1)=f(-4)=f(1)=0   
且f(x)在区间[0,3]与[3,+∞)上分别递减与递增 
如右图可知:
即x∈(1,4)函数图象位于第四象限
x∈(-∞,-4)∪(-1,0)函数图象位于第二象限     
综上说述:x?f(x)<0的解集为:(-∞,-4)∪(-1,0)∪(1,4)
故答案选:D
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式