求第9题详细过程,有悬赏
1个回答
2014-11-02
展开全部
证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中
∠BDH=∠CDA BD=CD ∠HBD=∠ACD ,
∴△DBH≌△DCA,
∴BH=AC.
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
在△ABE和△CBE中
∵ ∠AEB=∠CEB BE=BE ∠CBE=∠ABE ,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:BG的平方-GE的平方=EA的平方
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中
∠BDH=∠CDA BD=CD ∠HBD=∠ACD ,
∴△DBH≌△DCA,
∴BH=AC.
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
在△ABE和△CBE中
∵ ∠AEB=∠CEB BE=BE ∠CBE=∠ABE ,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:BG的平方-GE的平方=EA的平方
更多追问追答
追问
学霸姐姐能再教几题么
追答
我是男的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询