高二数学,如图,求解析
1个回答
2014-11-09
展开全部
可设直线方程为y-1=k(x-2) (k≠0,否则与椭圆相切),设两交点分别为(x1,y1),(x2,y2),则x1^2/2+y1^2=1,x2^2/2+y2^2=1,两式相减得
(x1+x2)(x1-x2)/2+(y1+y2)(y1-y2)=0,
显然x1≠x2(两点不重合),故(x1+x2)/2+(y1+y2)(y1-y2)/(x1-x2)=0,
令中点坐标为(x,y),则x+2y(y1-y2)/(x1-x2)=0,
又(x,y)在直线上,所以(y-1)/(x-2)=k,显然(y1-y2)/(x1-x2)=k,
故x+2y*k=x+2y(y-1)/(x-2)=0,
即所求轨迹方程为x^2+2y^2-2x-2y=0.
还有一点要注意,即x,y的范围:x^2/2+Y^2<1.
(x1+x2)(x1-x2)/2+(y1+y2)(y1-y2)=0,
显然x1≠x2(两点不重合),故(x1+x2)/2+(y1+y2)(y1-y2)/(x1-x2)=0,
令中点坐标为(x,y),则x+2y(y1-y2)/(x1-x2)=0,
又(x,y)在直线上,所以(y-1)/(x-2)=k,显然(y1-y2)/(x1-x2)=k,
故x+2y*k=x+2y(y-1)/(x-2)=0,
即所求轨迹方程为x^2+2y^2-2x-2y=0.
还有一点要注意,即x,y的范围:x^2/2+Y^2<1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询